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Introduction: 

Inflammation is a natural defense mechanism in our body to protect itself after             
trauma. Although it is a necessary signaling process for the body, it interferes with healing.               
This is is especially apparent during surgery when inflammation at an incision or wound              
site is prevalent and must be controlled for proper healing in patients. Anti-inflammatory             
drug delivery is a crucial to help alleviate this problem. This paper aims to explore the                
diffusion of drug from a coated-suture drug delivery system. This is widely applicable for              
medical procedures that require localized drug delivery to internal wound sites or surgical             
incisions [3]. 

 

Figure 1. Internal sutures are used in surgery to stabilize and close ankle incision [1] 
 

2 



 

For our model, the drug of interest is the glucocorticoid steroid drug            
dexamethasone. It is one of the most well known anti-inflammatory drugs (WHO list of              
essential medicine) [9]. It is a strong immunosuppressant and works by blocking            
inflammatory mediators that induce enzymes involved in pain [10]. This drug is very             
versatile and can be taken orally, subcutaneously, or intravenously. This means it can be              
delivered directly into the wound site for immediate anti-inflammatory effects [10].  
 

 

 Figure 2. Dexamethasone Molecular Structure [2] 
 

 

 

Figure 3. Suture Drug Delivery System [3] 
 

Sutures that are coated with drugs can solve the problem of controlling            
inflammation at wound or incision sites. These sutures are loaded with drugs by wrapping              
a drug-delivery sheet made of biocompatible polymer called poly lactic-co-glycolic acid           
(PLGA) which is then doped with a drug of interest [3]. PLGA breaks down by hydrolysis of                 
its ester linkages once exposed to the body’s interstitial fluid. During a surgical operation,              
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this means the PLGA+drug composite sheet breaks down in the tissue where the suture is               
being placed, allowing for the drug to then diffuse and interact with the affected target               
tissue. We will model diffusion of dexamethasone from the PLGA sheet to the surrounding              
tissue. From this, we can then predict the area of tissue that will receive adequate               
concentration of dexamethasone and also predict the drug lifetime for a given dosage. 
 
Mathematical Models: 

We developed two models to simulate drug diffusion, in which we make some             
common assumptions. We assume that the suture is sufficiently deep within surface and             
the tissue surrounding it is homogeneous. In this case, our model is independent with 𝜃.               
Another assumption we make is that the suture’s length is much longer than suture’s              
radius. As a result, our model is independent of the z direction as well. By making these                 
assumptions, we can simplify our model as one-dimensional cylindrical diffusion: 
 

(r )∂t
∂u = r

D ∂
∂r ∂r

∂u  

 
In our model, the suture’s radius is denoted as a , and the outer radius of PLGA is                 

denoted as b . The illustration is shown in Fig. 4. 
 

 

Figure 4. Cross-section of suture 
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We assume that the suture is impermeable so the boundary condition at a is zero               
flux condition. Initially, the drug is localized within the PLGA layer. Another boundary             
condition we set is zero value at infinity because the depth of tissue is much longer than the                  
suture’s radius. 

In Model I, we assume that PLGA degradation is fast in comparison with the              
diffusion of DEX in PLGA. As a result, we set our initial condition as for r from a              (r, )u 0 = C0      

to b , where is the given drug concentration. We then have the following boundary   C0            

condition and initial condition: 

 ∂r
∂u(a,t) = 0  

(∞, )  u t = 0  

(r, )   for r f rom a to b  u 0 = C0  

 
In this model, the PLGA degrades quickly, so we can assume that the diffusivity of               

DEX in the r :(a ,∞) space is the diffusivity in tissue. The diffusivity we use here is 4.11×10-5                 
mm2/s, which is based on a rat study.[4] We set a = 0.1 mm as our suture radius and a                    
PLGA sheet thickness of b - a = 0.04 mm, based on typical dimensions used.[3] We use                 
C 0 =0.33 M as our initial drug concentration, which is based on the loading capacity of DEX                
in PLGA.[5][6] 
 

In Model II, we let our drug release rate be limited by PLGA hydrolysis. We do this                 
by letting drug release occur over a course of T =30 days, which is based on the time it takes                   
for complete degradation-limited drug release from a 50:50 lactic acid-glycolic acid           
polymer [8]. Although drug release from PLGA follows a sigmoidal curve (Fig. 5), we              
initially wanted to approximate this with a constant release rate boundary condition. A             
more accurate model is discussed in Future Models. A finite amount of DEX is released over                
a fixed duration based on the amount that can be loaded onto PLGA, C 0, the lifetime of the                  
PLGA layer, T , the cross-sectional area of the PLGA sheet, and the circumference of the               
release boundary. This release ends when t > T due to complete release of the drug, and can                  
be represented by the piecewise flux boundary condition at r = b . Our resulting boundary               
and initial conditions are: 

; t−D ∂r
∂u(b,t) = 2bT

C (b −a )0
2 2

 < T  

; t ≥ T  −D ∂r
∂u(b,t) = 0   

(∞, )  u t = 0  

(r, )  u 0 = 0  
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Figure 5. Drug release ratios for various PLGA compositions (lactic acid:glycolic acid). [8] 

 
 

Analytical solution approximation (Model I): 
We start with the Green’s function for an infinite body with a hole in radial               

coordinates [7]: 

(r, ; , ) dβG t r0 t0 = 1
2πa2 ∫

∞

0
e−

a2
β D(t−t )2 0 βR(r)R(r )0

J (β) +Y (β)1
2

1
2  

where (r) ( )Y (β) ( )J (β)R = J0 a
βr

1 − Y 0 a
βr

1  
 

Since we have a zero-flux boundary condition and no generation term, the only             
contribution to the solution comes from the IC term: 

(r, ) u (r , )·G(r, , ; , , )·r dr dθ  u t = ∬a 0
∞2π

0 0 θ0 θ t r0 θ0 0 0 0 0  
 

We are working with a 1-D Green’s function, which is independent of 𝜃0. This allows               
the integral over d 𝜃 0 to be factored out. The initial condition u 0 is zero everywhere except                
r 0=a  to b , where it is C 0.The integral limits for dr 0 become a  to b : 

(r, ) θ r ·G(r, ; , )dru t = ∫
2π

0
d 0 ∫

b

a
C0 0 t r0 0 0  

 
After pulling out C 0, plugging in our Green’s function, and evaluating the integral             

over d 𝜃 0, we obtain the following equation: 
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(r, ) e dr dβu t = a2
C0 ∫

∞

0
∫
b

a
r0

−
a2

β D(t−t )2 0 βR(r)R(r )0
J (β) +Y (β)1

2
1

2 0  

 
With our current knowledge of Bessel function integration, we were not able to             

evaluate this integral further and had to resort to numerical approximation. We decided to              
use the trapezoidal integration method since it provides decent accuracy and is not as              
computationally demanding as higher order methods such as Simpson’s or Boole’s rules. 
 
First integration along 𝛽: 

(r, )u t =  

e ( )dra2
C0

2
Δβ ∑

n

j=1
∫
b

a
r0

−
a2

(β +β )D(t−t )j
2 2

j+1 0

J (β ) +Y (β )1 j
2

1 j
2

β R(r,β )R(r ,β )j j 0 j + J (β ) +Y (β )1 j+1
2

1 j+1
2

β R(r,β )R(r ,β )j+1 j+1 0 j+1
0  

 
 
Second integration along r 0: 

(r, )u t =  

(r )e (a2
C0

2
Δβ

2
Δr0 ∑

n

j=1
∑
k

i=1
0,i + r0,i+1

−
a2

(β +β )D(t−t )j
2 2

j+1 0

J (β ) +Y (β )1 j
2

1 j
2

β R(r,β )R(r ,β )j j 0,i j + J (β ) +Y (β )1 j+1
2

1 j+1
2

β R(r,β )R(r ,β )j+1 j+1 0,i j+1 +  

          )J (β ) +Y (β )1 j
2

1 j
2

β R(r,β )R(r ,β )j j 0,i+1 j + J (β ) +Y (β )1 j+1
2

1 j+1
2

β R(r,β )R(r ,β )j+1 j+1 0,i+1 j+1  

Note that the end index of the sum along discrete points 𝛽 j is n rather than infinity.                 
This is another approximation we make in order to make the solution computable. Despite              
this approximation, we can see that this will still be computationally demanding since each              
point computed in the (r, t ) space requires its own double summation in the (r 0, 𝛽) space.                 
The Matlab code used to do this computation can be found in Appendix A. 
 
Analytical solution (Model II): 

In Model II, the only non-zero term is constant flux boundary condition at r  = b : 
(r, ) D u (b, )G(r, , ; , , )·bdt dθ  u t = ∬0 0

t 2π ∂
∂t0  

t0 θ t b θ0 t0 0 0  
 
We can substitute our boundary condition in. Since this model is also independent 

of 𝜃 0. The integral over d 𝜃0 can  be factored out as well: 

(r, ) (b ) θ (r, ; , )dtu t = 2T
DC0 2 − a2 ∫

2π

0
d 0 ∫

t

0
G t b t0 0  

(r, ) (b )(2π) (r, ; , )dtu t = 2T
DC0 − a ∫

t

0
G t b t0 0  

 
After plugging in the same Green’s function as for Model I, we obtain the equations               

shown below. Because there will be no drug release after time greater than PLGA livetime,               
the constant flux boundary condition will become 0. Instead, we will have a new diffusion               
function with initial condition as the concentration at t = T: 
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(r, ) dβdt ; tu t = 2T
DC0

a2
(b−a) ∫

t

0
∫
∞

0
e−

a2
β D(t−t )2 0 βR(r,β)R(b,β)

J (β) +Y (β)1
2

1
2 0  < T  

 

(r, ) u (r , )· dβ·r dr dθ ; t ≥ Tu t = ∬b 0
∞2π

b 0 T 1
2πa2 ∫

∞

0
e−

a2
β D(t−T )2 βR(r)R(r )0

J (β) +Y (β)1
2

1
2 0 0 0   

where (r , ) dβdt ;ub 0 T = 2T
DC0

a2
(b−a) ∫

T

0
∫
∞

0
e−

a2
β D(T−t )2

0 βR(r,β)R(b,β)
J (β) +Y (β)1−

2
1

2 0  

 
Similar to Model I, these equations can be numerically solved in Matlab. However, 

we chose to use a PDEPE based solver due to its shorter computational time and simpler 
implementation. 
 
PDE solver approximation (Model I): 

The PDE solver we are using is the pdepe function from MATLAB. Since the pdepe               
function cannot have an infinity boundary condition, we reset our boundary condition at             
u (10,t )=0. This is a reasonable boundary condition since 10 mm is relatively large             
compared with 0.04 mm, the thickness of the drugged PLGA layer. The MATLAB code used               
can be found in Appendix B. 
 
 
 
PDE solver approximation (Model II): 

The simulation time for model II is 90 days due to the slow degradation rate of                
PLGA. We expand our right boundary condition to u(100,t)=0 to approximate a            
semi-infinite system. The MATLAB code used can be found in Appendix C. 

 
Results: 

Fig. 6, Fig. 7, and Fig. 8 show the results of analytical solution approximation and               
PDE solver approximations, respectively. We can see that they only have a slight difference,              
which may be due to the trapezoidal integration parameters used when approximating the             
analytical solution. At t = 600 seconds, the concentration in the pdepe solution at 0.1 mm is                 
a little higher than the analytical solution. This is because pdepe’s boundary condition             
cannot be at infinity, resulting in less space for the drug to diffuse over.  

For Model II, the drug concentration increases when time is smaller than 30 days              
due to the constant flux condition. After 30 days, the drug is depleted and the concentration                
near the suture begins to decrease. The reason why the diffusion distance is much greater               
than model I is because the drug flux comes into tissue through left boundary condition               
over an extended time, which gives the drug more time to diffuse. 

Fig. 6 and Fig. 7 only show r in range 0 mm to 1 mm which the area we are                    
interested in. For Fig. 8, the  range is from 0 mm to 60 mm.  
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Figure 6. Analytical solution approximation 

 

 
Figure 7. PDE solver approximation (Model I) 
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Figure 8. PDE solver approximation (Model II) 

 
With this model, we can discuss two important factors of drug delivery: drug             

lifetime and effective area. The drug’s concentration has to be above a certain level to be                
functional, so finding the maximum distance at which the concentration remains above this             
threshold is essential. We define this distance as r min. Since the concentration profile is              
time-dependent, not only depends on given concentration but also time. Our model rmin             

shows an example of the for a given concentration as the yellow curve in Fig. 9. The     rmin             

method to find in our algorithm is to compare the absolute difference between given   rmin             

concentration and solution. In Fig. 10 and 11, we demonstrate two with different given           rmin     

concentrations of Model I and Model II. 
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Figure 9.  as a function of minimum concentration and timermin  

 

 
Figure 10. of two given concentrations in Model I.rmin  
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The concentration we choose for the red curve is a rough estimate of the drug               
concentration necessary to be functional based on an IV dosage that was found to be               
effective and the total blood volume of the human body.[4] We can see that increases              rmin   

with time at the beginning as the drug diffuses away from the suture, followed by a gradual                 
decrease after peaking at a certain value. If we extend our observed time, we expect the red                 
curve have the same tendency as the blue curve. We can also see there is a flat part at the                    
end of blue curve. This shows that there is no concentration higher than the given               
concentration so  will be the same as the radius of suture.rmin  

 
The r min of Model II is similar to Model I but with a longer diffusion range and longer                  

lifetime. When the simulation time for Model I is extended to 8e+06 s, r min for u min = 5.1e-06                  
M has a maximum at 7 mm before decreasing (plot not shown). This may be due to the                  
prolonged release of DEX in Model II having a positive effect on diffusion-length. 

 
Figure 11. of two given concentrations in Model II.rmin  

 
Different drugs have different diffusivity in tissue depending on their size and 

hydrophobicity. To investigate how drug diffusivity affects our model, we compare r min 
with different diffusivities. In Fig.12 and 13, we can see that the higher the diffusivity, the 
farther drug can diffuse. 

12 



 

 
Figure 12. rmin with different D in Model I. 

 
Figure 13. rmin with different D in Model II. 

 
The reason why the flat part of blue curve is not equal to radius of suture is because 

our resolution (dx, dt) and threshold of comparison is still not small enough. As a result, we 
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will lose the information when the concentration changes slightly. Also, the result of D = 
0.0411 remains near the suture is because the diffusion is so fast the concentration 
immediately drops below the effective threshold. 
 
Future models: 

Though our model performs well, it can still be further improved. The first thing to               
consider is sigmoidal release of DEX from PLGA as the polymer undergoes hydrolysis.             
Instead of using a constant rate boundary condition, we use a rate corresponding to the               
time derivative of the release curve in Fig. 5. This rate would be in the form of a Gaussian                   
function: 

e−D ∂r
∂u(b,t) = 2b

C (b −a )0
2 2 1

σ√2π
− 2σ2

(t−t )0.5 2

 

Where t 0.5 is the time at which half of the total drug is released. 𝜎 is a time constant 
inversely proportional to the slope of the linear segment of the release curve and can be 
found by fitting the release curve to a cumulative normal distribution function. 
 

This model can also be improved by considering different diffusivities in PLGA and             
tissue. In this case, we will have to separate our diffusion equation into two parts and the                 
boundary condition at will become time-dependent.r = b  

     In PLGA: (r )∂t
∂uPLGA = r

D ∂
∂r ∂r

∂uPLGA  

 BC:    ∂r
∂u (a,t)PLGA = 0  

           ∂r
∂u (b,t)PLGA = ∂r

∂u (b,t)Tissue  

   In Tissue: (r )∂t
∂uTissue = r

D ∂
∂r ∂r

∂uTissue  

 BC:   ∂r
∂u (b,t)Tissue = ∂r

∂u (b,t)PLGA  

 ∂r
∂u (∞,t)Tissue = 0  

 
Assuming high drug-target affinity, consumption of the drug can be modeled by            

irreversible binding with its target. This reaction is dependent on the concentration of drug              
and a rate constant k : 

(r ) u(r, )  ∂t
∂u = r

D ∂
∂r ∂r

∂u − k t  
 

Moreover, if the target is a uniformly generated substance, we have to consider the              
concentration profile of the target when we calculate the elimination rate of the drug. 

(r ) u (r, )u (r, )  ∂t
∂u = r

D ∂
∂r ∂r

∂u − k  t target t  
 
Discussion: 

Sutures that are coated with anti-inflammatory drugs can help alleviate pain           
through local drug delivery at wound or incision site during and after surgery. We modeled               

14 



 

diffusion of dexamethasone from the PLGA sheet in two cases: i) PLGA hydrolysis is fast               
and releases drug instantly, ii) PLGA hydrolysis is slow and releases drug at a constant rate                
over an extended time. In the first case, we found solutions using an analytical              
approximation and the Matlab pdepe function. In the second case, we only used the pdepe               
function to find the solution. Based on the time it takes for PLGA to degrade (several                
weeks), the latter model is more relevant to our suture-PLGA system. For            
degradation-limited release, effective drug radius and dosage peak time are 73 mm and 58              
days for a minimum drug concentration of 5.1e-04 M. This minimum effective            
concentration is two orders of magnitude larger than the value we estimated, so we expect               
the actual effective drug radius and dosage peak time to be larger for 5.1e-06 M. We also                 
expect these parameters to decrease significantly when DEX elimination rate is factored in.             
Based the results from our current model, DEX is effective on a large length scale and does                 
not need to be considered to determine the minimum suture spacing. In addition, the              
duration that the drug remains above effective concentration means that it is unlikely that              
additional painkillers need to be administered during recovery. 

These models can also be applied to other suture and drug types to predict drug               
lifetime and effective area, which is essential in planning proper drug delivery in surgical              
operations. In a clinical setting a physician can observe the postoperative drug            
effectiveness through these models. For example, if the wound is more serious and needs              
immediate treatment, a suture would need to be coated with a Model I biomaterial that               
hydrolyzes quickly for fast drug delivery. If a wound needs to be controlled with              
anti-inflammatory over a longer period of time, a PLGA suture is more applicable because              
of its longer lifetime. 
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Appendix A: Matlab code for analytical solution approximation 
% function inf_hole2 
% solution for infinite body with circular hole, 1-D 
% 11/15/16nl  
 
global D a b C0 
D = 4.11e-5; % diffusion constant, mm^2/s 
a = 0.1; % radius of hole, mm 
b = a + 0.04; % outer radius of PLGA, mm 
C0 = 0.33; % initial condition, M = mol/L = umol/uL 
 
B = 100; % upper bound of bessel integration 
L = 100; % simulation length 
T = 3600*24; % simulation time 
 
% double integration domain 
db = 0.1; % integration step size KEEP SMALL 
bmesh = db:db:B; % integration domain 
dr0 = (b-a)/10; % dummy var integration step size 
r0mesh = a:dr0:b; % dummy var domain 
 
% space-time domain 
dr = (L-a)/100; % step size in r dimension 
dt = T/100;  % step size in t dimension 
rmesh = a:dr:L; % domain in space dim1 
tmesh = 0:dt:T;  % domain in t 
nr = length(rmesh); % number of points in space dim1 
nt = length(tmesh); % number of points in t dimension 
 
% besselr definition 
besselr = @(r,b) besselj(0,b.*r./a).*bessely(1,b)-bessely(0,b.*r./a).*besselj(1,b); 
 
% Integrand definition 
fun = @(t,r,r0,b) 
exp(-b.^2.*D.*t./a.^2).*b.*besselr(r,b).*besselr(r0,b)./(besselj(1,b).^2+bessely(1,b).^2).*r0; 
 
[X,Y,Z,W] = ndgrid(tmesh,rmesh,r0mesh,bmesh); 
F = fun(X,Y,Z,W);  
sol = C0/a^2*dr0*trapz(db*trapz(F,4),3); 
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suture = zeros(nt,floor(a/dr)); 
sol = [suture, sol]; % append zeros 
 
rmesh2 = 0:dr:L; 
 
figure(2) 
surf(rmesh2,tmesh,sol,'edgecolor','none') 
title(['Analytical solution']) 
ylabel('t, s') 
xlabel('r, mm') 
zlabel('u(x,t), M') 
 
Appendix B: Matlab code for pdepe solution Model I 
clear all 
clc 
 
global D a b C0 
D = 4.11e-5; % diffusion constant 
a = 0.1; % radius of hole 
b = a+0.04; % outer radius of fabric 
C0 = 0.33; % initial condition 
  
dx = 0.001; 
dt = 0.1; % sec 
obtime = 10; % min 
  
x = a:dx:10; 
t = 0:dt:obtime*60; % sec 
nt = length(t); 
suture = zeros(nt,a/dx); 
  
sol = pdepe(0,@pdefun,@ic,@bc,x,t); 
new_sol = [suture, sol]; 
  
x2 = 0:dx:10; 
  
figure(1) 
surf(x2,t,new_sol,'edgecolor','none') 
title('Matlab pdepe') 
caxis([0 0.25]) 
xlabel('x, mm') 
ylabel('t, sec') 
zlabel('u(x,t), M') 
xlim([0,1]) 
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%% 
% time of interest 
  
Cs = 5.1e-6; 
Cs2 = 5.1e-2; 
zth = 1e-8; % threshold to find zero 
zth2 = 1e-3; 
ri = 0; 
ri2 = 0; 
rsiall=ones(1,length(t))*a; 
rsiall2=ones(1,length(t))*a; 
  
for j = 1:length(t) 
    sol_s = new_sol(j, :); 
    k=1; 
    k2=1; 
    for i = 1:length(x2) 
        if abs(sol_s(i)-Cs) < zth 
% rsa(k) = x2(i); 
            ri = i; 
            k=k+1; 
        end 
  
        if abs(sol_s(i)-Cs2) < zth2 
% rsa(k) = x2(i); 
            ri2 = i; 
            k2=k2+1; 
        end 
    end 
% rs = mean(rsa); 
    if any(ri) 
        rsiall(j) = x2(ri); 
    end 
    if any(ri2) 
        rsiall2(j) = x2(ri2); 
    end 
end 
  
figure(3) 
hold on 
plot(t, rsiall, 'r-', 'DisplayName', ['u_{min} = ',num2str(Cs), 'M']) 
plot(t, rsiall2, 'b-', 'DisplayName', ['u_{min} = ',num2str(Cs2), 'M']) 
title('Concentration of Interest') 
xlabel('t, sec') 
ylabel('r,mm') 
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hold off 
legend('show') 
%% 
% % Polar Coord. 
% tclick = 1; 
% r = 0:dx:1; 
% theta = 0:0.1:2*pi+0.1; 
% [rmesh, thetamesh] = meshgrid(r,theta); 
% %change into cartesian Coord. 
% X = rmesh.*cos(thetamesh); 
% Y = rmesh.*sin(thetamesh); 
% Z = new_sol(tclick,:)'*(theta >=0); 
% 
% figure(3) 
% surf(X, Y, Z') 
% caxis([0 0.4]) 
% title('Suture_{not pass}') 
% zlabel('concentration') 
  
  
%% 
% % Animation 
% tlen = 5*60/dt; % in min 
% 
% vid = VideoWriter('Suture_not_pass_bes.avi'); 
% open(vid); 
% 
% axis tight equal 
% set(gca,'nextplot','replacechildren'); 
% 
% for k = 1:tlen-1 % in sec 
% Zt = new_sol(k,:)'*(theta >=0); 
% caxis([-0.01 0.05]) 
% surf(X,Y,Zt') 
% title('Suture_{not pass} Bes') 
% text(1,-1,max(max(Zt)),[sprintf('%.2f',k*dt/60),' 
(min)'],'Fontsize',12,'Color','red','HorizontalAlignment','right'); 
% M = getframe(gcf); 
% writeVideo(vid, M); 
% end 
% 
% close(vid); 
  
%% 
% function definitions for pdepe: 
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% -------------------------------------------------------------- 
function [c, f, s] = pdefun(x, t, u, DuDx) 
% PDE coefficients functions 
% form: c(x,t,u,dudx)*dudt = x^-m * d/dx(x^m * f(x,t,u,dudx) + 
% s(x,t,u,dudx) 
  
global D 
c = 1; 
f = D * DuDx; % diffusion 
s = -3.6e-5*u; 
% s = 0; 
end 
  
% -------------------------------------------------------------- 
  
function u0 = ic(x) 
% Initial conditions function 
global C0 a b 
u0 = C0*(x>=a)*(x<=b); 
% u0 = 0; 
end 
% -------------------------------------------------------------- 
  
function [pl, ql, pr, qr] = bc(xl, ul, xr, ur, t) 
% Boundary conditions function 
% pl(x,t,u) + ql(x,t,u) * f(x,t,u,dudx) = 0 at x = xl 
% pr(x,t,u) + qr(x,t,u) * f(x,t,u,dudx) = 0 at x = xr 
global C0 D b a 
pl = 0; 
ql = 1; % 
pr = ur; 
qr = 0; % 
end 
 
 
Appendix C: Matlab code for pdepe solution Model II 
clear all 
clc 
 
global D a b C0 
D = 4.11e-5; % diffusion constant  
a = 0.1; % radius of hole 
b = a+0.04; % outer radius of fabric 
C0 = 0.33; % initial condition 
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dx = 0.01; 
dt = 1*60*60*24; % sec 
obtime = 90; % min 
 
x = b:dx:100; 
t = 0:dt:obtime*60*60*24; % sec  
nt = length(t); 
suture = zeros(nt,a/dx); 
 
sol = pdepe(0,@pdefun,@ic,@bc,x,t); 
 
figure(1) 
surf(x,t,sol,'edgecolor','none') 
title('Matlab pdepe') 
xlabel('x, mm') 
ylabel('t, sec') 
zlabel('u(x,t), M') 
xlim([0,60]) 
 
%% 
% time of interest 
 
Cs = 5.1e-6; 
Cs2 = 5.1e-4; 
zth = 1e-8; % threshold to find zero 
zth2 = 1e-6; 
ri = 0; 
ri2 = 0; 
rsiall=ones(1,length(t))*b; 
rsiall2=ones(1,length(t))*b; 
 
for j = 1:length(t) 
    sol_s = sol(j, :); 
    k=1; 
    k2=1; 
    for i = 1:length(x) 
        if abs(sol_s(i)-Cs) < zth 
%             rsa(k) = x2(i); 
            ri = i; 
            k=k+1; 
        end 
  
        if abs(sol_s(i)-Cs2) < zth2 
%             rsa(k) = x2(i); 
            ri2 = i; 
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            k2=k2+1; 
        end 
    end 
%     rs = mean(rsa); 
    if any(ri) 
        rsiall(j) = x(ri); 
    end 
    if any(ri2) 
        rsiall2(j) = x(ri2); 
    end 
end 
 
figure(3) 
hold on 
plot(t, rsiall, 'r-', 'DisplayName', ['u_{min} = ',num2str(Cs), 'M']) 
plot(t, rsiall2, 'b-', 'DisplayName', ['u_{min} = ',num2str(Cs2), 'M']) 
title('Concentration of Interest') 
xlabel('t, sec') 
ylabel('r,mm') 
ylim([0 70]) 
hold off 
legend('show') 
%% 
% function definitions for pdepe: 
% -------------------------------------------------------------- 
 
 
 
function [c, f, s] = pdefun(x, t, u, DuDx) 
% PDE coefficients functions 
% form: c(x,t,u,dudx)*dudt = x^-m * d/dx(x^m * f(x,t,u,dudx) + 
% s(x,t,u,dudx) 
 
global D  
c = 1; 
f = D * DuDx; % diffusion 
% s = -3.6e-5*u; 
s = 0; 
end 
 
% -------------------------------------------------------------- 
 
function u0 = ic(x) 
% Initial conditions function 
global C0 a b 
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% u0 = C0*(x>=a)*(x<=b); 
u0 = 0; 
end 
% -------------------------------------------------------------- 
 
function [pl, ql, pr, qr] = bc(xl, ul, xr, ur, t) 
% Boundary conditions function 
% pl(x,t,u) + ql(x,t,u) * f(x,t,u,dudx) = 0 at x = xl 
% pr(x,t,u) + qr(x,t,u) * f(x,t,u,dudx) = 0 at x = xr 
global C0 D b a 
pl =  C0*(b-a)/(30*3600*24)*(t<=30*3600*24); 
ql = 1; %  
pr = ur; 
qr = 0; %  
end 
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